MinerU 是一款一站式、开源、高质量的数据提取工具,主要包含以下功能:
Magic-PDF 是一款将 PDF 转化为 markdown 格式的工具。支持转换本地文档或者位于支持S3协议对象存储上的文件。
主要功能包含
- 支持多种前端模型输入
- 删除页眉、页脚、脚注、页码等元素
- 符合人类阅读顺序的排版格式
- 保留原文档的结构和格式,包括标题、段落、列表等
- 提取图像和表格并在markdown中展示
- 将公式转换成latex
- 乱码PDF自动识别并转换
- 支持cpu和gpu环境
- 支持windows/linux/mac平台
\
- PDF-Extract-Kit
- 高质量的PDF内容提取工具包
python >= 3.9
推荐使用虚拟环境,以避免可能发生的依赖冲突,venv和conda均可使用。
例如:
conda create -n MinerU python=3.10
conda activate MinerU
开发基于python 3.10,如果在其他版本python出现问题请切换至3.10。
使用pip安装完整功能包:
受pypi限制,pip安装的完整功能包仅支持cpu推理,建议只用于快速测试解析能力。
如需在生产环境使用CUDA/MPS加速请参考使用CUDA或MPS加速推理
pip install magic-pdf[full-cpu]
❗️已收到多起由于镜像源和依赖冲突问题导致安装了错误版本软件包的反馈,请务必安装完成后通过以下命令验证版本是否正确
magic-pdf --version如版本低于0.6.x,请提交issue进行反馈。
完整功能包依赖detectron2,该库需要编译安装,如需自行编译,请参考 facebookresearch/detectron2#5114
或是直接使用我们预编译的whl包:
❗️预编译版本仅支持64位系统(windows/linux/macOS)+pyton 3.10平台;不支持任何32位系统和非mac的arm平台,如系统不支持请自行编译安装。
pip install detectron2 --extra-index-url https://myhloli.github.io/wheels/
详细参考 如何下载模型文件
下载后请将models目录移动到空间较大的ssd磁盘目录
在仓库根目录可以获得 magic-pdf.template.json 配置模版文件
❗️务必执行以下命令将配置文件拷贝到用户目录下,否则程序将无法运行
cp magic-pdf.template.json ~/magic-pdf.json
在用户目录中找到magic-pdf.json文件并配置”models-dir”为2. 下载模型权重文件中下载的模型权重文件所在目录
❗️务必正确配置模型权重文件所在目录,否则会因为找不到模型文件而导致程序无法运行
{
"models-dir": "/tmp/models"
}
如您有可用的Nvidia显卡或在使用Apple Silicon的Mac,可以使用CUDA或MPS进行加速
需要根据自己的CUDA版本安装对应的pytorch版本
以下是对应CUDA 11.8版本的安装命令,更多信息请参考 https://pytorch.org/get-started/locally/
pip install --force-reinstall torch==2.3.1 torchvision==0.18.1 --index-url https://download.pytorch.org/whl/cu118
同时需要修改配置文件magic-pdf.json中”device-mode”的值
{
"device-mode":"cuda"
}
使用macOS(M系列芯片设备)可以使用MPS进行推理加速
需要修改配置文件magic-pdf.json中”device-mode”的值
{
"device-mode":"mps"
}
magic-pdf pdf-command --pdf "pdf_path" --inside_model true
程序运行完成后,你可以在”/tmp/magic-pdf”目录下看到生成的markdown文件,markdown目录中可以找到对应的xxx_model.json文件
如果您有意对后处理pipeline进行二次开发,可以使用命令
magic-pdf pdf-command --pdf "pdf_path" --model "model_json_path"
这样就不需要重跑模型数据,调试起来更方便
magic-pdf --help
image_writer = DiskReaderWriter(local_image_dir)
image_dir = str(os.path.basename(local_image_dir))
jso_useful_key = {"_pdf_type": "", "model_list": model_json}
pipe = UNIPipe(pdf_bytes, jso_useful_key, image_writer)
pipe.pipe_classify()
pipe.pipe_parse()
md_content = pipe.pipe_mk_markdown(image_dir, drop_mode="none")
s3pdf_cli = S3ReaderWriter(pdf_ak, pdf_sk, pdf_endpoint)
image_dir = "s3://img_bucket/"
s3image_cli = S3ReaderWriter(img_ak, img_sk, img_endpoint, parent_path=image_dir)
pdf_bytes = s3pdf_cli.read(s3_pdf_path, mode=s3pdf_cli.MODE_BIN)
jso_useful_key = {"_pdf_type": "", "model_list": model_json}
pipe = UNIPipe(pdf_bytes, jso_useful_key, s3image_cli)
pipe.pipe_classify()
pipe.pipe_parse()
md_content = pipe.pipe_mk_markdown(image_dir, drop_mode="none")
详细实现可参考 demo.py
仓库地址
GitHub:https://github.com/opendatalab/MinerU
本网站所有资源及文章均源自互联网,经过我们的收集整理后呈现给用户。我们明确声明,本网站不直接参与任何资源的创作或制作过程,仅作为信息的传递者。若您发现本网站上的任何内容侵犯了您的合法权益(包括但不限于版权、商标权、专利权等),请立即通过以下联系方式与我们取得联系。在收到您的反馈并核实情况后,我们将迅速采取相应措施,包括但不限于删除侵权内容,以确保您的合法权益得到及时保护。
资源鉴别:本网站发布的资源可能包含水印、广告链接或其他引流信息,这是由资源原始来源决定的。我们提醒用户在使用这些资源时,应保持警惕,自行鉴别信息的真实性和适用性,避免受到不必要的干扰或误导。 非商业用途:本网站提供的资源仅供学习、研究及非商业性交流使用。我们鼓励用户尊重原创,支持正版。若您计划将本站资源用于商业目的,请务必先获得合法授权,否则因此产生的一切法律后果将由下载用户自行承担。
为了更好地服务用户,解决您在使用本网站过程中可能遇到的问题或反馈侵权信息,我们提供了以下联系方式(请将“#”替换为“@”后使用): 联系方式:contact#kukaylib.com
本网站致力于为用户提供高质量的信息服务,但对于因网络状况、第三方干扰、不可抗力等因素导致的服务中断、数据丢失、信息错误等问题,本网站不承担任何责任。同时,本网站对于用户在使用本站资源过程中可能产生的任何直接、间接、偶然、特殊或惩罚性损失,也不承担任何法律责任。 请用户在使用本网站时,务必遵守相关法律法规及道德准则,自行承担因使用本站资源而产生的所有风险和后果。
本网站有权随时更新或修订本免责声明,更新或修订后的免责声明一经发布即具有法律效力。用户应定期访问本页面以了解最新的免责声明内容。 感谢您对本网站的理解与支持!我们将继续努力,为用户提供更加优质、便捷的信息服务。
评论(0)